PHYSICAL REVIEW E

VOLUME 53, NUMBER 4

Memory and correlation effects in the quantum theory of thermalization

H. S. Kohler
Physics Department, University of Arizona, Tucson, Arizona 85721
(Received 3 August 1995)

In a previous publication [H. S. Kohler, Phys. Rev. C 51, 3232 (1995)] equilibration rates were studied for
an extended system of nonequilibrium nuclear matter. The two-time Green’s functions in the Kadanoff-Baym
(KB) formalism were solved numerically. These quantum-mechanical calculations were compared with the
Markovian (semi)classical Uehling-Uhlenbeck collision term often used in the analysis of collisions between
heavy ions. The equilibration was found to be substantially slowed down by quantum effects. The theoretical
as well as experimental study of nonequilibrium systems is of course of great interest in many areas of physics,
e.g., within the realm of quantum transport in solid state devices. On the theoretical side various methods and
approximations are the subject of intensive study. By the KB ansatz, for example, the equations can be
simplified to a one-time kinetic equation while preserving the non-Markovian character. The generalized KB
(GKB) ansatz of Lipavsky, Spicka, and Velicky [Phys. Rev. B 34, 6933 (1986)] is often preferred. In this paper
approximations based upon the GKB ansatz are discussed in relation to the exact KB formalism. Numerical
comparisons are made for both the strongly interacting nuclear medium as well as an electron plasma. A
non-Markovian collision integral, including memory effects in a quasiparticle approximation, is often dis-
cussed in the literature. It is found that this approximation appreciably overestimates the collision rates even
more than the classical (Boltzmann) approximation. The inclusion of a width in the spectral function, i.e.,
going beyond the quasiparticle approximation, gives considerable improvement. The competition between the
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memory and correlation effects is found to lead to an anomalous saturation of the relaxtion rate.

PACS number(s): 05.30.—d, 05.20.Dd, 05.60.+w, 21.65.+f

L. INTRODUCTION

Results of numerical solutions of the Kadanoff-Baym
(KB) equations for nonequilibrium nuclear matter were
shown in a previous paper [1]. Comparisons were also made
with classical Markovian dynamics. It is the purpose of the
present paper to investigate further the validity of this and
some other suggested reductions and approximations of the
KB equations.

The study of nonequilibrium phenomena is an important
subject in all branches of physics. In solid state physics one
is concerned with the dynamics of charged particle plasmas
in semiconductors and metals. In nuclear and high-energy
physics the collision between composite particles, e.g., heavy
ions, is another example. The theoretical study of these phe-
nomena is almost exclusively based upon the Markovian
transport equation already developed by Boltzmann. Correc-
tions due to non-Markovian transport have been investigated

to some extent. Starting with the work of Brueckner, another-

important question in the theory of transport has been greatly
elucidated. This concerns the interaction used in the collision
term. For weak interactions a Born approximation is as-
sumed to be adequate. Thus, for charged particle interactions
a screened (static or dynamic) Coulomb potential is custom-
arily used. For stronger interactions, e.g., nuclear, a Brueck-
ner type of effective interaction is in principle used. In prac-
tice this is too complicated and some simple approximation
is used. To a first approximation one uses an interaction that
reproduces scattering cross sections. As in the Coulomb case,
one should, however, also include in principle dynamic ef-
fects by considering the medium and frequency (two-time)
dependence of the interaction.

Correlations are explicitly neglected in the collision term
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in the classical Markovian-Boltzmann equation. The distri-
bution functions relate in this case to freely propagating
Green’s functions. The kinetic energy is conserved in each
binary collision. Consistent with these statements is the fact
that the equilibrium solution of the Boltzmann equation is a
Fermi distribution.

There is an increased interest in going beyond the Mar-
kovian Boltzmann equation. Effects of memory (i.e., non-
Markovian effects) and correlations have been studied in
various approximations. In previous works [1-3] the present
author showed numerical comparisons between the quantum-
transport theory of Kadanoff and Baym and the classical
Boltzmann theory. The study was made with particular ref-
erence to collisions between heavy ions usually studied with
the Boltzmann equation or the Boltzmann-Uehling-
Uhlenbeck, Vlasov-Uehling-Uhlenbeck, etc., versions
thereof. The general conclusion of the study was that quan-
tum effects reduce relaxation rates by a factor as small as
one-half.

In the present investigation it is sought to discuss sources
of the quantum corrections in more detail. To do so it is
found convenient to use the generalized Kadanoff-Baym
(GKB) ansatz introduced by Lipavsky et al. [4]. This allows
one to separate between the effects of time retardation and
correlations.

The formalism and some technical details needed for the
presentation are shown in Sec. II. This includes various ap-
proximations considered for the calculations, the results of
which are shown in Sec. IIl. Results are shown both for a
strongly interacting (nuclear) system (Sec. III A) and for a
screened Coulomb (electron) system (Sec. III B). Section IV
gives a short summary and some final conclusions.
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II. FORMALISM

Only a short summary of the required formalisms is
shown. For further details regarding the Kadanoff-Baym for-
malism see, for example, Refs. [5-7].

A. KB equations

In a homogeneous medium neglecting the mean field the
KB equations reduce (with A=1) to
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The notations are conventional. G~ and G= are essentially
the occupation numbers for holes and particles, respectively.
The particle distribution function f(p,?) is given by

f(p,t)=—iG=(p,1,1). (2.3)

The Green’s functions G~ and G = are related on the diago-
nal in the (z,¢") plane by
G7(p.t,1)=—i+G~(p.1,1). (2.4)

Also useful is

G=(p,t,t")=[G=(p,t",1)]*. 2.5)
The scattering rates %, are given by

> d3p
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Here T< is defined by
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The effective interaction T= is usually defined in a binary
collision (ladder) approximation by an integral equation for-
mally written as

(2.7)

To=V+VG{G, T, (2.8)
where V is the “free” interaction potential. In the semicon-
ductor case the bubble random-phase approximation summa-
tion is also important.

In the following 7* will be approximated by a local time-
independent effective interaction to be defined below. In the
semiconductor calculation a statically screened Coulomb po-
tential is used. The exchange term is not included. The equa-
tion (2.6) for the scattering rates then simplifies to

d’p,d?
e (@G (py i)
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where V is the local interaction dependent on momentum
transfer q only. The momentum inegrations are conveniently
evaluated using the convolution theorem for Fourier trans-
forms.

In previously published works the KB equations were
solved numerically for nuclear matter initially in non-
equilibrium [1-3]. The time evolvement of the distribution
function, related to the Green’s function by Eq. (2.3), was
calculated from an initial distribution in momentum space
described by two separated Fermi spheres. Results were pre-
sented with both an initially uncorrelated and an an initially
correlated medium. In the latter case the time integrations
described below were extended along the imaginary axis. All
results in the present paper are with an initially uncorrelated
medium.

The results in the previous works were expressed in terms
of relaxation times as a function of density and the final
equilibrated temperature. To accomplish this the Green’s
functions of the two times ¢ and ¢’ had to be time evolved
(for each value of p) in the (z,¢’) plane starting from
t=t'=tgy, at which time the collisons are turned on. In other
words, G(¢,t") was time stepped from ¢ to r—1+ Az for all
to=t'<T, where T is the present time and similarly for ¢’.
The time integrations on the right-hand sides of Egs. (2.1)
and (2.2) require knowing the Green’s functions for all times
(points in time) within the square defined by to<¢<T and
to=t'<T. The scattering rates 2(¢,z') also need to be
known for all times 7(=<¢=<T7, but only at t'=7 (and all
times tp<¢'<T at r=T). The numerical application of this
formalism has in general been considered to be unfeasible,
although one can find that under specific circumstances the
computations can be made fairly simple. It was shown, for
example, in the previous work for nuclear matter that the
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memory time in that case was only a few fm/c so that only a
few of the past times (mesh points in the time variable) had
to be saved. It will be demonstrated below that this simpli-
fication is a consequence of the induced correlations in the
medium.

Methods have been proposed with the purpose of reduc-
ing the two-time Green’s function formalism to a simpler
one-time theory. To this end approximations are sought that
allow time stepping only along the diagonal r=¢'. This re-
quires seeking suitable approximations for the off-diagonal
G= and G~ needed in Egs. (2.1) and (2.2). Relations have
been proposed expressing the off-diagonal elements in terms
of the diagonal. Using relations Eqgs. (2.3) and (2.4), the for-
malism is then reduced to a one-time theory with one distri-
bution function instead of the two coupled Green’s functions
G~ and G~.

In the following sections several such approximate for-
malisms are presented and tested numerically.

Approximations of the KB equations are suitably intro-
duced with the help of the GKB ansatz.

This ansatz was introduced by Lipavsky er al. [4] and has
some advantages over the earlier KB ansatz [5]. The GKB
ansatz is given by

G=(p.t.t"Y=G=(p,t,1)S(p,t.,t") (2.10)
with ¢’ >t and
G (p.1,t")=G7(p,t',t")S(p.t.1") (2.11)

with 1>1’', where S is the spectral function. In the exact
solution of the KB equations the self-consistently calculated
Green’s functions are used when computing the collision ker-
nel. In addition to these exact solutions, approximations will
be shown in which various approximate Green’s functions,
based on the GKB ansatz, are used in the collision kernel.
Two separate approximations of the spectral function will be
considered: the quasiparticle and a Lorentzian, i.e., without
and with a width.

B. Memory effect

In the quasiclassical approximation one has

S(p,t,t')=e't=1"), (2.12)
One then simply obtains in this approximation, with ¢ and
t' ordered as in Eqgs. (2.10) and (2.11), respectively,

G<(p,t,t/)=G<(p,t,t)eiw(titl),

G™(p.t,t")=[—i+ G (p,t',t")]e =) (2.13)
where we used Eq. (2.4) so that the off-diagonal elements ¢
#t' for both G” and G= are obtained simply from the
G~ on the diagonal.

The mean field is neglected in the present calculations and
therefore w=p?/2m. The main effect of the mean field is to
reduce all relaxation rates with a factor equal to the effective
mass.

Below we report on calculations in the above approxima-
tion for comparison with the “‘exact” KB results. These cal-
culations are done with the same computer program as used

for the KB calculations only modified by using the approxi-
mate Greens functions, given by Eq. (2.13), on the right-
hand side of Egs. (2.1), (2.2), and (2.6). It should be noted
that as a consequence of the GKB ansatz the Green’s func-
tions G- and G~ are now only needed at times (¢,7) and
(T,t"), respectively, related to the time diagonal by Eq.
(2.13). The computation is reduced to a time stepping along
the diagonal only as in a one-time kinetic equation. In the
presentation of numerical results below, this approximation
will be referred to as the memory effect.

It is easy to see that in the above memory approximation
the collision integral indeed reduces to the well-known ki-
netic equation including memory effect. In fact, we see that
using the approximate Greens functions given by Eq. (2.13)
on the right-hand side of Eq. (2.1) and using Eq. (2.3), one
obtains

d’p,d*p'd’p;

J T
;_'—tf( p,T)=f 2o ftodt2cos[(w+w1—w'_w;)

X(T—=1) ]V (p—p')(FF.f'f]

—ff1F'F{)é(p+p—p —P1), (2.14)

with f=f(p,t) and F=1—f, etc. This is the familiar non-
Markovian extension of the Boltzmann collision term includ-
ing a memory effect but neglecting the effects of the width
I', i.e., the induced correlations. In this approximation there
is still an integration over past times as in the original
Kadanoff-Baym equations, but there is an appreciable reduc-
tion in computational effort as the Green’s function (or dis-
tribution function) only has to be known and time evolved
along the diagonal times t=1¢".

The integration over past times is evidently important
only if the relaxation time is short compared to the memory
time itself and this has been demonstrated in several calcu-
lations [8~11]. In equilibrium the distribution function is
constant and if the integration is extended over all times the
time integration results in a J function of the energies as in
the classical equation. The quantum effect contained in the
retardation is therefore seen to be related to the energy
broadening due to the time rate of change of the system, but
not to the correlations between particles. The memory effect
results in nonconservation of kinetic (single-particle) ener-
gies, as seen from Eq. (2.14).

C. Memory effect with damping

Starting with a noninteracting system, in which case the
spectral function has zero width, and turning on the interac-
tions, subsequent collisions between the particles result in a
nonzero width of the spectral function, i.e., there is a buildup
of correlations. In previous work initially correlated Green’s
functions were also used following work by Danielewicz
[7,12]. It was found to be important to include this effect
especially at low temperatures (excitations). In the present
work we introduce the effect approximately by introducing a
constant and finite width in the spectral function. Thus

S(p,t’t/):e7(]/2)1‘(t*t’)eiw(t—r')’ (2.15)
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FIG. 1. Logarithm of the quadrupole moment of the distribution
in momentum space as a function of time, for nuclear matter of
normal density excited to 45 MeV. The curves are marked as fol-
lows (for more details see the text): KB, two-time Green’s func-
tions; C, classical; C1, modified classical; M, memory; MW,
memory with damping (width).

i.e., a Lorentzian distribution with I' being the width. This
width is directly related to the correlation time ?.,, by

IF'=t/t.oy,

where ¢, is defined as the time for the system to become
correlated. This time can be identified in the KB calculations
as the time at which the correlation energy becomes constant
(see, for example, Fig. 2 in Ref. [1]). Because of the finite
width the integrations over past times will be cut off with
I">0, therefore reducing the memory time and the collision
rates. Numerical results in this approximation will be pre-
sented below and will be referred to as calculations of the
memory effect with damping. The damping is simply in-
cluded in Eq. (2.14) by a factor e 2F7~" in the integrand

[13].
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FIG. 2. Absolute value of the two-time Green’s function
G=(p,t,t") with p=0. Off-diagonal elements in (#,¢’) is shown
with ¢z’ fixed at 10 fm/c.

D. Classical approximation

A characteristic of the KB equations that is also main-
tained in the equations with memory effect is that kinetic
energy is not conserved in the collision between the two
particles, i.e., a typical many-body quantum effect. The en-
ergy broadening is directly related to the relaxation time as
follows. In the limit of a static (equilibrium) system the
memory effect ceases to be relevant and the Boltzmann limit
is obtained. This is easily seen from Eq. (2.14); in equilib-
rium the distribution function is constant and if the integra-
tion is extended over all times the time integration results in
a & function of the energies w. The (kinetic) energy is con-
served in each binary collision and therefore also globally.
This limit is also obtained by approximating the Green’s
functions on the right-hand side of Eq. (2.13) by values at
time 7, i.e., the present time. Thus

G=(p.t,T)=G~(p,T,T)e'!'" ),

G7(p,T,t")=[—i+G=(p,T,T)]e """, (2.16)
where the time 7 is, as before, the present time. The classical
calculations presented below were made with the KB com-
puter program, but with the Green’s functions in the collision
kernel approximated by the above equation (2.16).

In this case the time integration in Eq. (2.14) can of
course be performed analytically and if extended over all
times it yields a & function expressing the conservation in
kinetic energy in each binary collision and therefore also
globally. The classical Boltzmann equation is thus obtained.

A comparison of the KB results with the classical Boltz-
mann equation was one of the main topics of the previous
publications in this series [1-3]. The numerical results for
the classical case were then obtained from a completely dif-
ferent computer program that explicitly contained the & func-
tion over kinetic energies referred to above. In the present
paper classical results will again be shown. But we stress
again that they are now obtained by modifying the KB pro-
gram, following the discussion above, by approximating the
Green’s functions in Egs. (2.1), (2.2), and (2.6) by Eq. (2.16).
In addition, the time integration is extended over sufficiently
long (negative) times that the & function of the energies is
well approximated. Details of this (and other parts of the
calculation) are described below.

If, however, the time integration is maintained within the
limits o and 7 there is still an energy broadening. This
broadening is directly related to the time range of the inte-
gration, i.e., to the time the system is “‘observed.” It is there-
fore expected to deviate from the classical at the beginning
of the evolution when the time interval is short. This broad-
ening is in fact present in all the calculations (except for the
initially correlated), i.e., in the case of the full quantum as
well as in the approximate, at the beginning of the respective
evolutions. To isolate this effect, results will be shown for
both ranges of time integrations, i.e., the extended and the
finite, ¢, to 7.

The energy broadening due to the short observation time
can also be avoided by starting the time integrations in the
quantum and the other approximations at some time less than
tg, i.e., before the collisions are switched on. Such calcula-
tions were also made, but results of these are not shown here.
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FIG. 3. Similar to Fig. 2, except that this is for the Green’s
function G~.

It should be pointed out that in these cases (i.e., other than
the classical) correlations are induced, so that the system is
excited above the initial state. This is avoided by the imagi-
nary time stepping used in a previous paper [1].

III. NUMERICAL RESULTS

The numerical results presented in this paper are primarily
aimed at testing the various approximations decribed above.
We believe that these tests are particularly meaningful be-
cause all the calculations are made with essentially the same
computer program as explained in Sec. II, so that numerical
uncertainties due to meshes, etc., are minimized. Results are
presented for both nuclear matter and semiconductors.

A. Nuclear results

The nuclear calculations are done with the same meshes
as used in Ref. [1]. The approximations of the present paper
is tested for the case of a final equilibrated temperature of 45
MeV and normal density. The initial distribution is as in the
earlier calculations, that of two separated Fermi spheres. In
this case the Fermi momentum of each sphere is 1.1041
fm ™! and the centers are separated by 3.383 fm ~!. Conse-
quently, the surfaces of the two spheres are separated by
~1.2 fm~! and the density betwen them is zero. This is
important for the understanding of Figs. 2—5. Results of the
KB calculations for this particular case are shown both for a
correlated and for an uncorrelated initial distribution in Fig.
5 of [1]. The classical result is also shown in the same figure.
The figure is a logarithmic plot of the quadrupole moment of
the distribution function as a function of time.

In Fig. 1 of the present paper the curve marked KB shows
the same KB result with an initial uncorrelated distribution,
while curve C is the classical result. This latter result is also
identical to that shown in Fig. 5 of [1]. It is now calculated,
however, as described in Sec. II D, with o= — 10 fm/c. The
kinetic energy was then essentially constant, increasing
slightly from an initial 74.1 to 74.6 MeV/A at the end of the
run. The curve C1 shows the result of energy broadening;
the classical calculation is modified by restricting the time

3149

TIME t (fm/c)

FIG. 4. Similar to Fig. 2, except that p=1.2 fm ! and this is on
the symmetry axis.

integration as described above by choosing f#,=0. The ki-
netic energy is, in this case, increasing from 74.1 to 110.0
MeV/A, reached to within 2% at r=5 fm/c. It is seen that
curves C1 and KB overlap during the initial correlation
time, while at later times C and C1 become nearly parallel.
The range of the time integration for C1 is then large enough
to reduce the energy broadening so that C and C1 show the
same slope.

Curve M in the same figure shows the memory effect. In
this case the kinetic energy saturates at about 103 MeV/A at
t=5 fm/c. It is seen that this approximation deviates even
more from the KB result than does the classical approxima-
tion. Further inspection of the calculations discussed below
in relation to Figs. 2—-5 shows a simple explanation. The
integration over past times enhances the collision rates be-
cause at the past times the deviation from equilibrium is
much larger. The equilibration follows a decay law that is
almost exactly exponential. The memory effect therefore
greatly exaggerates the contribution from past collisions. The
quasiclassical spectral function [Eq. (2.12)] that was used in

G~ (.10,

TIME t (fm/c)

FIG. 5. Similar to Fig. 3, except that p=1.2 fm ™! and this is on
the symmetry axis.
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deriving this approximation neglects the width present in the
exact KB theory. This width acts as a cutoff in the time
integration. It is included in the approximation referred to
above as a memory effect with damping. The curve labeled
MW in Fig. 1 shows the result of such a calculation, with a
constant width of 50 MeV, showing near agreement with the
KB result.

To further illustrate the nature of the various approxima-
tions, absolute values of the off-diagonal elements of G and
G= in (¢,t") space are plotted in Figs. 2—5. They are all
normalized to the value one at 10 fm/c. One of the time
arguments is as indicated, chosen to be 10 fm/c. The curves
are labeled as in Fig. 1. The Green’s functions for the clas-
sical Markovian approximation are not plotted. They will be
constant and equal to the value one for all times.

Figures 2 and 3 show the results for the momentum
p=0. The occupation of momentum states is here equal to
zero at the initial time ¢=0 and consequently
G<(p=0,0,10)=0 in Fig. 2. As T— an equilibrium will
eventually be reached. The diagonal (equal times) elements
of G< follow closely an exponential law, i.e.,
G(0,t,1)~1—e "7, By Eq. (2.13) the memory approxima-
tion, i.e., the solid curve M in Fig. 2, also follows roughly
this exponential law shown by the dotted line M with
Te1=3 fm/c, which is the final relaxation time for the quad-
rupole moment in the memory calculation, as can be seen
from Fig. 1. It is, however, also seen from Fig. 1 that the
relaxation time is not really constant in this case and there-
fore the solid and dotted curves M in Fig. 2 do not overlap
that well. This is especially obvious for the first few fm/c
when the system is still being correlated and all relaxations
are slower. It should also be noted that the system has not yet
reached equilibrium at =10 fm/c. In the case of memory
effect with damping the exponential factor in Eq. (2.15) su-
presses the solid line M to the dotted line M W, which agrees
quite well with the exact KB result shown by a solid line.

The corresponding results for G~ are shown in Fig. 3. In
the memory approximation the Green’s function
|G (p=0,10,t=0)|=1 and it will decay with increasing ¢.
The solid curve marked M shows the result in this approxi-
mation normalized to the value one at t=10 fm/c. The dotted
curve M shows the result, as in Fig. 2, if the relaxation were
to follow an exponential decay with a relaxation time
7= 3 fm/c. Comparing with the KB result (shown by the
solid line KB), one finds again that the approximation M
therefore greatly exaggerates the past values of G~, while
suppression due to the damping brings the result close to the
KB result, as shown by the dotted curve marked MW.

Figures 4 and 5 show the corresponding results for G=
and G~, respectively, at a momentum p=1.2 fm ! along
the symmetry line of the distribution, i.e., at a point that lies
inside one of the initial Fermi spheres so that this state is
then fully occupied. The memory calculation of G= is shown
by the solid line marked M in Fig. 4. It is here found that it
is fitted with a relaxation time 2 fm/c, i.e., somewhat smaller
than the 3 fm/c found for the states at the center of momen-
tum space. The deviation from the KB curve is here signifi-
cant, again showing that the memory effect exaggerates the
contribution from past times. The constant correlation
(damping) width I'=50 MeV used in the calculations is too

1 I T
0.0 10 20 30 40
Momentum p (fm™)

FIG. 6. Logarithm of the distribution function shown in various
approximations along an axis perpendicular to the symmetry axis
and with py=0 and at r=10 fm/c.

small at this momentum state, as shown by the curve marked
MW, but it gives a substantial improvement over the M
curve. The corresponding result for G” in Fig. 5 shows,
however, that the damping is sufficient in this case.

An important quantum effect already pointed out by
Danielewicz [7] is that particles will occupy the high mo-
mentum states more quickly than in the classical case. This is
a consequence of the nonconservation of energy in individual
collisions in the quantum case as opposed to the classical.
This situation is illustrated by Fig. 6 for the various approxi-
mations under consideration here. This figure shows a loga-
rithmic plot of the distribution functions for particles scat-
tered into states perpendicular to the beam axis and with
p|=0 at r=10 fm/c. The result shows, as noted above, that
the classical approximation greatly underestimates the distri-
bution function for p>2.5 fm~!. Somewhat surprising is
that the memory effect shows a good result here, while the
memory effect with a width gives too large values.

A final example of the effect of correlations is shown in
Fig. 7. Here the initial distribution is a zero-temperature
Fermi sphere. In the KB case correlations build up with final
occupation numbers shown by the full line. The initial ki-
netic energy of the uncorrelated Fermi distribution is 24
MeV/A and after a few fm/c it increases, because of the
correlations to 48 MeV/A. This was already shown by Fig. 2
in Ref. [1]. The memory calculation is shown by the broken
line. The kinetic energy rises in this case to a larger value, 55
MeV/A. Correlations are stronger and the depletion of states
is larger. The larger correlations in the memory calculations
are thus consistent with the results above.

B. Semiconductor results

In semiconductors one may have one or two component
plasmas that can be produced either optically or by means of
doping. The effective masses are determined by the band
structure. We concentrate here on a one-component plasma.
In this case the interaction is the screened Coulomb poten-
tial. The optical excitations result in plasmas that are de-
formed in momentum space. The actual shape of this defor-
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FIG. 7. Effect of correlations for the quantum case (KB) and in
the memory approximation (M). The initial uncorrelated distribu-
tion is shown by a broken line with ocupation-numbers being 1 and
0.

mation depends on the details of the semiconductor. In this
exploratory calculation we simply choose as an initial distri-
bution two Fermi spheres, like in the nuclear matter case, but
here they are both heated to a temperature of 7=228 K with
a Fermi energy w=0. The distance between the centers of
the two Fermi spheres is 2.0(1,;1 and the total density is then
0.708 electrons/aj with the Bohr radius a;'=132 A. The
effective mass is taken to be 0.067m,. These are represen-
tative values for an electron-plasma in semiconductors [14].
The screening length « of the Coulomb potential is varied
between 0.2a,' and 1.0ay'. For comparison, the static
screening length was calculated to be kK~ 1.5a§1 .

As a measure of the momentum relaxation, the quadru-
pole moment of the distribution was calculated as a function
of time, as it was for nuclear matter. The results for the
approximations under consideration are plotted in Fig. 8.
Comparing with the nuclear calculations in Fig. 1, it is seen
that in both cases the KB calculation relaxes slower. The
MW calculation is almost the same, with the damping taken
to be I'=0.025 eV in the atomic case. In the nuclear case the
memory effect has a much faster relaxation than all the oth-
ers. In the atomic calculation this, however, is not so. It
rather agrees with the C1 calculation. After initial correla-
tions the relaxation rates of C and C1 are very much the
same as in the nuclear case. This shows that in this case the
memory effect is relatively small and that the effect of cor-
relations is the dominant factor. The difference between the
KB and C calculations are much larger in the atomic case
than in the nuclear case. As shown in an earlier publication
[1], this difference depends, however, on the temperature and
the results are therefore not comparable.

A characteristic of all but the Boltzmann calculation is the
increase of kinetic energy as correlations develop from an
initially uncorrelated system. The initial kinetic energy for
the chosen distribution is 6.74E /a},. At the end of the cal-
culations we find, respectively, for KB, 8.59; M, 8.28; MW,

i KB
9[ . MW
i
o] ]
o ]
£ ]
] Cc1
'\‘ 5
o] C
i M
©
o ]
......... SRESSSSSS—_—G— -

TIME (fs)

FIG. 8. Similar to Fig. 1, except that this is for an electron
plasma. The initial distribution is defined in the text. The screening
length is k=0.2a5".

8.85; and C1, 6.89E, /ag‘ The C calculation (Boltzmann)
was made with 7, chosen to be — 160 fs and the final kinetic
energy was then 6.75Ey /ag, i.e., very well conserved. The
Rydberg energy is here Ex=4.2 meV.

The screening length « is not only density dependent but
it is a kinetic variable [15]. The value chosen in Fig. 8 is
relatively small. As the screening length increases and the
interaction decreases in strength it is expected that all the
different approximations would converge to a common re-
sult. This is illustrated by Fig. 9, where k= 1a;‘ instead of
k=02ay", as in Fig. 8. As expected, the classical (C) and
memory (M) calculations both show a decreased relaxation
rate. Surprising, however, is that the quantum calculation
(KB) approaches those curves as a result of a increased re-
laxation rate. The situation is further illustrated by Fig. 10.
The relaxation time for the quantum evolution (curve marked
KB) is shown as a function of the screening length . The
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FIG. 9. Similar to Fig. 8, except that here x=1.0ay .
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FIG. 10. Relaxation time 7, is plotted as a function of screening
length «. Note the saturation of relaxation as the strength is in-
creased (« decreased) in the quantum calculation (KB). This
anomaly is not seen in the memory (M) nor (of course) in the
classical calculation (C).

strength of the interaction increases with decreasing «. One
would therefore expect the relaxation time to decrease as « is
decreased. Instead one finds a saturation point at k~0.6. The
curves marked C and M for the classical and memory cal-
culations, respectively, show, on the other hand, the expected
behavior as a function of «. Figure 10 also shows, as pointed
out earlier, that the memory calculation gives a somewhat
shorter relaxation time relative to the classical calculation.

The above discussion refers to the relaxation time of the
quadrupole moment of the distribution function. The same
anomaly is seen to occur also for the relaxation of the radial
distribution function by comparing Figs. 1(d) and 2(d) of
Ref. [14].

The anomaly can rather easily be understood from our
previous results. It has been seen that the memory effect
alone tends to increase the relaxation rate, while the correla-
tions leads to a decrease. The competition between these two
effects can, under the right circumstances, lead to the de-
scribed anomalous saturation effect. In the classical case the
rate scales of course simply with the square of the strength.

IV. SUMMARY AND CONCLUSIONS

Previous comparisons between the quantum and classical
relaxation rates in nuclear equlibrations are extended to com-
parisons also with relaxation rates calculated including only
memory effects but excluding the correlations. The memory
effect calculations were also extended by an approximate
inclusion of the damping of memory due to the correlations.
It is found that memory-effect alone overestimates the retar-
dation effects. The approximate damping effect showed ap-
preciable improvement in comparison with exact Kadanoff-
Baym quantum collisions. The agreement and disagreement
with the KB results were shown to be directly related to the
off-diagonal behavior of the Green’s functions in the various
approximations.

The approximations were formally obtained from the KB

equations by using the GKB ansatz. In the quasi-particle ap-
proximation the memory approximation (M) was obtained.
Allowing a width in the spectral function due to correlations,
the approximation referred to as memory with damping
(MW) was obtained. Neglecting both memory and width, the
classical approximation (C or C1) was obtained.

The initial correlated distributions that were generated in
the nuclear case in the previous nuclear calculations [1] have
so far not been considered in the atomic case. Because of the
weaker interactions the correlation times ., are in the latter
case relatively longer and it is expected that a larger number
of time steps along the imaginary axis will be required. The
small width of the spectral function in w space transforms to
a large width in (#,#") space in the atomic case. It is quite
feasible to do the calculations for a strongly interacting sys-
tem in (z,¢") space. For weakly interacting systems it may be
more feasible to do the calculations in w space.

The calculations presented here were made possible by
using a local interaction when evaluating the collision term.
This allowed the use of a fast Fourier transform routine for
this calculation. The exact KB calculation is then no more
time-consuming than the approximate ones. It would, how-
ever, be desirable for both nuclear and atomic problems to
extend the calculations to include exchange nonlocal poten-
tials.

The present comparisons of approximations show that
both memory and correlation effects have to be included for
reliable estimates of equilibrations. In the calculations pre-
sented here the exact KB calculations were no more difficult
than the approximate ones. For extensions to more realistic
interactions, etc., one may, however, have to seek suitable
approximation methods. The present work may be helpful
also in this endeavor.

The effects of memory and correlations are often opposed.
The former tends to increase the rate of the evolution while
the latter slows it down. This can lead to an interesting
anomaly, as discussed in relation to Fig. 10.

The same competition between memory and correlation,
is also believed to explain why the classical and quantum
widths displayed in Fig. 6 of Ref. [1] converge at the high-
temperature end of that figure. The memory effect increases
with temperature as the relaxation rate increases and the past
distribution becomes increasingly different from the present.
The effect of correlation [I" in Eq. (2.14)] stays essentially
constant however. The net result is that correlations will
therefore dominate the evolution at low temperature while
the memory effect will take over at higher temperature. The
anomalous scaling of the relaxation rate with the strength of
the interaction is of course a consequence of the nonlinear
structure of the quantum equations already pointed out by
Danielewicz (see Fig. 8 of Ref. [7]).
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